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Risk-efficient estimation of the mean exponential survival time under
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Abstract: The paper proposes a sequential estimator 06 of the parameter
O of an exponential distribution when the data is censored. Without an,
further conditions, it is shown that 0 is asymptotically risk
efficient when the loss is measured by the squared error loss of estimation
of 0 plus a linear cost function of the number of observations. In
addition, it is shown that 0 is asymptotically normal as the cost per
observation goes to zero.
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1. Introduction.

In several longitudinal investigations the estimation of the mean

survival time is of basic importance. This is usually based on the data

gathered from a sample of n(k 1) identical units on test as in a clinical

trial or life test. However, it is often the case in these survival studies

that the lifetimes of the specimens are not completely observable due to

random withdrawals and consequent loss to follow-up. Accordingly, for

each survival time X we envisage a competing censoring time Y , but the

only datum available is (Z,8) where Z = min(XY) and 6 1 whenever

X ! Y and 8 - 0 otherwise. We shall assume X. to be independent of Y

and Z > 0 almost surely (a.s.) for each e

Suppose {(Zil6i):l : i n) is a random sample of size n with

lifetimes X having common exponential survival function

F(t) = exp(- t/e) , t > 0 with 6(> 0) unknown and the censoring times

Y having common (unknown) survival function C . We

consider the sequence of estimators { n of 0 given by

([2=1 z i)/(di l 'i) if i 6

n 0 if jn 6i = 0

O is easily seen to converge a.s. to 0 ds n-- for each .
n

The loss incurred in estimation of 8 by e is
n

2L n(a,c) a( n -0)
2 + cn [1.2]

where a(> 0) is a known constant and c(> 0) is the cost per unit

observation. With the definition [1.1] we can show that
E(On - 0)2  (ao 2/E6)n-1 + o(n-1) [1.3

whence the risk associated with the estimation scheme becomes

Rn(ac) - ELn(ac) - (aB 2/E6)n- I + cn+ o(nU-).

Therefore, in order to minimize this risk (with respect to n) we mist
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take a sample of size n0 with subsequent minimum risk RO where (for

small c)

0 2c 0  0 2R° ~ 2c°  and n - (ae /cE6). [1.41C C C.

Since 6 is the unknown parameter which we wish to estimate, this minimum

risk R0  and optimal sample size nOc are also unknown and thus we areC. C

led naturally to explore a sequential scheme for estimating 0 . In this

article we propose one such procedure in which the sample size is given

by a random stopping number N(c) and the associated risk R - E%(c)

*0
satisfies R l /R C 1 as c -- 0 , that is if our scheme is asyptotically

risk-efficient.

Sequential procedures analogous to the one outlined here have been

considered, in the absence of censoring, by several researchers beginning

with the pioneering work of Robbins (1959) for the estimation of the mean

of a normal population. This was later extended by Starr (1966) and Starr

and Woodroofe (1969). The study of sequential point estimation of the

exponential mean is taken up in Starr and Woodroofe (1972). Cardiner and

Susarla (1982) make the first examination of the problem of sequential

estimation of the mean survival time in the presence of censoring when both

the underlying survival time and censoring distributions are unspecified.

When censoring is absent, similar procedures for estimation of functionals

of an unspecified distribution are discussed in Sen and Ghosh (1981), Chosh

and Mukhopadhayay (1978) with some extensions and refinements by Chow et.

al. (1981, 1982). Throughout the rest of the paper, the terms involving

the random variable[ n l ai - 0] are left out without any further

indication since P I 8i a 0] goes to zero at an exponential rate and
i--a

all our scale factors will be lik- n- with a > 0



2. The Sequential Procedure

Let m(a 1) be the initial sample size. Then motivated by (1.4]

define the stopping number N0 (=- N(c)) by

= min{n a m:n 2 ( n-)} [2.11I c C) (a
where y > 0 is a constant and 02 is an appropriate estimator of

n

S2(0) - 2/E6 - *0(" FG) - 
. Notice that by the ordinary Central Limit

Theorem we have from 11.1]

n (8 n - 0) ---'p- N(0,a 2 (e)). [2.2]

An appropriate estimator of o2 e) based on {(Zi,8i):l :9 1 f n) is

-2
where

-2 f- n {Z -63 [7 0~, 0] [2.31

with the overscore denoting the usual corresponding sample mean and (A]

denoting the indicator of the set A . Observe that for each fixed 0

-2 2
a converges a.s, to a (0) as n '-+

Our proposed sequential scheme will take N(c) observations and

estimate 9 by aN(c) with resulting risk

* 2
R C = a E(6 - 0) + c E(N(c)) 12.4]ic N(c)"

The main result of this paper is

Theorem 1, (Risk Efficiency). For each y > 0

0
R /Rc - 1 as c + 0.

Furthermore, we can easily demonstrate

Theorem 2. (Asymptotic Normality of *N(c)). As c + 0 * for each 0

{/N-() 6N(c) 0)/;N(c)) converges in distribution to a standard normal

random variable.
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The proofs of these theorems are outlined in the next section. We

begin with a demonstration of the expansion [1.31 and a lemma concerning

the rate of growth of N(c) as c + 0

3. Proofs.

We begin with a Lemma on left truncated inverse binomial moments.

Lemma 1. Let V be a binomial random variable with parameters n ,p

Then for any positive integers k L

E(V [ V 2! L)) : K(np) A

where the constant K does not depend on n and p.

Proof. Write n [k) . n~n - 1) ..... (n - k + 1) and n-[k] - [kI -1 Then

I { (x + k)[k n C]~(
w=O

-(n + k)[k ( (n + k)tx+k] ~x( )X/~ + k)1)
X=0

: n + k) [ki

Therefore since (2x + k)[k]/xk is decreasing with respect to x

ECVk.[V 2t tU : (t + k)[k eI E((V + k)(k[ I

~ L+ k)[k (n + k)-[k] -k

:9K(np)

We now turn to the crucial expansion given in [1.3].- To this end note that

from [1.1] we can write

nn0 [3.1]

where

Un (n n 'n n

We then have

Lemma 2. For any p 2! 1, EIUnI2 -o(&) and EIVnIp 0(l)



Proof. Since 6 is either 0 or 1 and 0 S Z S X a.s., all moments

of 8 and Z are finite. From (3.21, we see that Un  is the average

of n iidrv's with zero mean and variance 0 E8(- 0 EZ) . Then by the

Marcinkiewicz-Zygmund-Htlder inequality we obtain

gIunl 2 p S k-P EIz - o12p - O(n- p )

(Here, and throughout this sequel k is a generic constant not depending

on n).

For the second part of this lemma we apply Lemma 1 to the binomial

random variable n6 , from which the required statement follows immediately.

This concludes the proof of Lemma 2.

Before we proceed further, we point out that [1.3] follows from the

equality 0 - 8 - (E6) U (1 - V (n - E8) where U and V aren n n n n

defined by [3.2].

The next Lemma gives a convergence rate (as c + 0) for the stopping

number N of [2.13. First note that N 2 (a)1/2(l+y) a.s. so that N + a
c c cc

a.s. as c + 0 . In the sequel int [x] denotes the greatest integer

S x and kl,k2,.. denote constants independent of c , but could depend

on C and 0

Lemma 3. Let 0 < e < 1 be arbitrary. Then as c + 0

PIN sJ it[n0Cl - C)] 0 (c)

and [3.3]

PIN , int[n c(1 + c)]] = O(c)

Proof. Write b -E and nlc - int[bl / cl + Y)] , n - int[n(1- )]

On the set IN I2c] we have that n 2 bn for some n nle , ......

Therefore



n2c
P[N An 2 c :SP U ( S b 3-1

n-n
ni2cc

na 2 02 -2 2 2"

S P[ U [a -2 S b n2 c - a2]] , where 02 a2(8) = 82/Ea ,

lc

2c 2 _ a 2(2 e)J2
:9P[ U ,11% a ( -€

-P[ max 1- I n] • forsome n>0. [3.4]
n1cn5n2c.

o 2 2  --Now a a an(Zn - EZ)-b(6 -E6) [3.5]

where

a- (Z + EZ)T 3 [6 a O] and

2 -3---2 2-
b n ,- (EZ) (ES) (6 n + nES + (ES))S. [,6 0]

Since a - 20(E6)-2 = a0  a.s. and b-- 3e'E6) 2  b a.s. as n--

we obtain from [3.5] that the righthand side of [3.4] may be bounded by

P[ max f ! - ZI > n] + P[ max 8 1 > il [3.61

ncnn2c ncn2c

for an q > 0 . Each of the two terms in [3.6] are handled in the same

fashion. Observe that {1i - EZI:nlc < n n2 ) is a reverse submartingale

to which the Kolmogorov maximal inequality applies. Thus
- mzl4+4y ,oc

P[ max 2i -ELI >] <5k2 EIZ - EZ O-(c)

nlc n2c

where k is a constant depending only on y . Thus combining [3.4]

through [3.63 yields the first statement of Lemma 3. The second is proven

in much the same way and so the proof of the lemma is terminated.

We may utilize the expansion in [3.5] to obtain the uniform integrability

0
of {Nc/O csc 0 ) for some co sufficiently small; from this

* E{NcIn 0  --+1 as 0+t0 will follow.

• .- + ++:c. . c. .

.. ..'...K .. .+ --I' II -- , l



To this end note from [2.11 that

I a ln 0 )/a + (1(c) - l)-Y/a + (ba)-i

ON(c) c c ON(c)-i

Then since N " + a.s. (as c 0 0) we obtain c/n 0-+ 1 a.s.q
C~cc

Furthermore

(N /n 0) 2  8{(( /0) 2 + - 2 (N(c) - 1)- 2 y + (ba)-2)

Thus in order to show E( sup (N C /n)) < - for some c0  sufficiently

a2 /a2 1)frsfiinllag msmall, we need only examine E(sup in - 1) for sufficiently large m
n>_m

However, from [3.5] and the convergences an- , bn --+ b0  a.s. it

suffices to establish the finiteness of E(supi- EZI) and

E(sup'i8 - E61) • The second is trivial, while the first is bounded by four times
n2m

ElY - EZ12 since - EZ~ln a m) is a reverse submartingale.

Proof of Theorem 2. Recall [3.1] and [3.21. From the central limit theorem
i2

nfun --- N (0,0 E) , for each e > 0 . Also Vn - (Ed) a.s. Hence

2 -2 2
n (0n - 9) -v N(0'o ) . We have noted that an -+ a a.s. (as n--

and N as c 4 0 . Hence, by [3,8], [3,13]r and 13,15] belwp we get
c

'N (eS(c) - e)/( - N (0,1) as c + 0.
N~c) N(c)

Proof of Theorem 1. In view of the fact that E{Nc/n -- 1 , [1.4] and

(2.41 we must verify that

0 -1 A21[3]lim(cnc E(ON(c) - 9) 1 13.7

Recall the expansion [3.3]. We first show
0 -12

lm (cn )  E( (N(c) - 0)[N c S n2c = 0 (3.81

Now

E{(c 1 () - 2)2[4 < n] < EU2(c) < n2c ] + EN(c) C n2c ]  [

where

.. " % n .Ed



Now applying the maximal inequality to the reverse submartingale,

(In- 6ni:nlc & n n 2.) in the third step and Lemma 3 we have.

E{U (c) INc 5 n2c ]f E( max Un[Ne < n2c])
nflcT2c

B <~l/1 max JUn12+2y)([- n])(1)
A. E~ 1  ~ n PN :

n :gn--n
lc 2c

!k4 E 1/( + )IU2+2y1 0 (cY/(l+y))

= 0(n-1)O(cY/'+Y)

nlc

c

-1(+) 0 -1 -

Since nlc N c -I 2 l  and (cnO) - - c -  we have that

.lim(cn E{U (N : n, 3) - 0 . [3.10]
00 C Ni(c) c 2c

2 2 2Similarly EK~w) N &n 2c] ) IE{W n(Ne x]
n~nlc

( c 2p1/pPN 
i-1/pnj-rn. ] xi ( 3.11]

I i E PNc5n 2c]
n=nlC

Now E =2 E{U2p V2p (a~ E8) 2p)

SEl/3U 6p )El/3{V6pEl/3 (6 6)6p

• {(n-3P)0(1)0(n- 3P)}1 /3 0 (n- 2P)

Thus the rhs in [3.111 is O(nl c 1 /p) = 0(ch) ,where
lc

4 h {2(1 + y)1-1 (2 - l/p) + (1 - l/p) > h whenever p > (2y + 3)/(3 + y) So

lim(cnC) kfW; Is : n 0 [3.12c
c+0

Collecting our results [3.10] and [3.12] we obtain [3.8]. An entirely

analogous argument using the second part of Lemma 3 will show
0 -1 - 2

lim(cn0) E(ON(c) - 0)2[NC > n3c]) - 0 [3.13]
c+0 

3where n3  in 0 (1 + c)] . Therefore, in order to verify [3.71 we are3 c
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left with proving

lim(cn) ((N(c) -e) [2c < N < n3C]) " 0 . [3.14]
c+O

However, from [1.3] lim(cn 0)-I E(S - 0) 2 1 , and further from the
c+O C 0

inequality 
c

E((N(c) - n o 0  
- e)[n2c <Nc <  3c

c c

2 2S E {(eN(c) - n0 ) [n2c < Nc . E (n 0)

C c

we see that it suffices to establish

~lim(cnO)- El(iON(c) - 0 0O) 2 [n 2 c -c N c 9 n 3c ]  0 . 13.

c+O

Once again we utilize the expression [3.3] from which we get
N 6(c) - 0 o 0 (s)-liu N(c) - U no)  (" (c() - n 0)) [3161

Observe that
• )2 [n <Nc 5

N(c) - 0 2c <C 3
c

SkSIE{(Un(c) U 0) 2 < N 5 n 3 ) [3.17]
n

t E{VNWC) - W 2[n2c < Ne < a3d)]
Ia

NOW

E{(UN(e) - U 0)2[n2c < Nc 5 n 3 C])
[3.18]

S max E[{ max (-U ) 2  . El (U U) 2 ] .

U ngan o nce a a
2c c *c c<~ 3c c

Since (U :n2  :5 n 0 a is a reverse martingale, [(U - U 0) 2 : <n 5n0
n c< c n 2c C

IC

is a reverse submartingale to which the maximal inequality will be applied.



This yields

E{ max (Un U) 2 )54ElU -U0
2

n <in nrl0 2c n0

4{EU 2  -EU 2 [3.19]
2c 2

2 E2) - 1 0 0 2
Now EU = (e ES)n 2c intln (1 )] and cn = 0(l) Therefore the

rhs of [3.19] is of order (cn0)e(l - ) -10(l) . Hence, by choosing c

arbitrarily small we have that

lim(cnO) -1E{ max (U - U ) 2 0 [3.201

n2c <nC c

The second term in [3.18) is handled in an entirely analogous fashion

and will yield the result paralleling [3.20]. So

lim(cn0)-1 E{(UN(c) - U 0)2In2c < Nc ! n3c]} = 0 . [3.21]
c+O no

Finally we must dispose of the second term in [3.17). This is easily

handled using the bound EW2 = 0(n- 2) and the simple inequalities
n

E{(WN(c - W 0)  < N 5 n 11
N~) 0'I 2 c c 3cn

c

2 n3c -2 -1 -2
s 4{EW 0+ " EW2) .0(n 0) +0(n. )E(1 -2

0nx C c
nc  n=n2 c

Then on selecting c arbitrarily small we obtain

lim(cn0) E{(WN(c) - W 0 ) [n2  < N S n3c] = 0 . [3.22)

C

Therefore in conjunction with [3.17], [3.21), and 13.22] yield [3.15].

This concludes the proof of Theorem 1.

M i i .
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4. Concluding Remarks.

To start with, it is worth pointing out that the results are true

even if G is degenerate at any point T . That is, the results hold

even in the fixed point truncation of Xi . Although the results are

stated here only when YI,.-,Yn,.. are i.i.d., similar results hold

even if Yl,.-.,yn o .-  are assumed to be independent only. In the

latter case however, some sort of condition like lim 0FGn > 0 , with
n

n C = , needs to be imposed.

The final comment concerns the damping factor n-Y  introduced in the

definition (2.1) of the stopping random variable N . Without this factor,

the sequential estimator 6N  may not be asymptotically risk efficient
N

as the following argument suggests. Define

N, n{n a m:n G() [4.1]

where a is defined by [2.3]. With these definitions, it can be seenn

that if the censoring distribution G has positive mass pat zero, then

*~ 2mthe risk Ri  of the sequential procedure BN is at least 0 p
CI

and R /R 0 --+ A as c + 0 and hence e N is asymptotically totallyc, c eNc,1

risk inefficient. Thus the factor n in the definition of N appears

to be important.
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